Abstract
Glucocorticoid-induced osteoporosis (GIOP) is the most common form of secondary osteoporosis due to excessive or long-term glucocorticoid administration, disturbing the homeostasis between bone formation and bone resorption. The bone biology of zebrafish shares a high degree of similarities with mammals. In terms of molecular level, genes and signaling pathways related to skeletogenesis are also highly correlated between zebrafish and humans. Therefore, zebrafish have been utilized to develop multiple GIOP models. Taking advantage of the transparency of zebrafish larvae, their skeletal development and bone mineralization can be readily visualized through in vivo staining without invasive experimental handlings. Moreover, the feasibility of using scales or fin rays to study bone remodeling makes adult zebrafish an ideal model for GIOP research. Here, we reviewed current zebrafish models for GIOP research, focused on the tools and methods established for examining bone homeostasis. As an in vivo, convenient, and robust model, zebrafish have an advantage in performing high-throughput drug screening and could be used to investigate the action mechanisms of therapeutic drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.