Abstract

Artemia has been used extensively in aquaculture as fodder for larval fish, shrimp, and shellfish. Epinecidin-1, an antimicrobial peptide, was isolated from grouper (Epinephelus coioides) in 2005. Epinecidin-1 has been previously reported to possess antimicrobial activity against several Gram-positive and Gram-negative bacterial species, including Staphylococcus coagulase, Pseudomonas aeruginosa, Streptococcus pyogenes, and Vibrio vulnificus. In this study, we used electroporation to introduce plasmid DNA encoding a green fluorescent protein (EGFP)-epinecidin-1 fusion protein under the control of the cytomegalovirus (CMV) promoter into decapsulated Artemia cysts. Optimization of various properties (including cyst weight (0.2 g), plasmid concentration (50 μg/100 μl), and pulse voltage (150 V), length (10 ms), and number (2)) resulted in a hatching rate of 41.15%, a transfection efficiency of 49.81%, and a fluorescence intensity (A.U.) of 47.46. The expression of EGFP-epinecidin-1 was first detected by quantitative RT-PCR at 120 h post-electroporation, and protein was identified by Western blot at the same time. Furthermore, the EGFP-epinecidin-1 protein inhibited V. vulnificus (204) growth, as demonstrated by zone of inhibition studies. Zebrafish fed on transgenic Artemia expressing CMV-gfp-epi combined with commercial fodder were more resistant to infection by V. vulnificus (204): survival rate was enhanced by over 70% at 7, 14, and 21 days post-infection, and bacterial numbers in the liver and intestine were reduced. In addition, feeding of transgenic Artemia to zebrafish affected the immunomodulatory response to V. vulnificus (204) infection; expression of immune-responsive genes, including hepcidin and defbl2, was altered, as shown by qPCR. These findings suggest that feeding transgenic Artemia expressing CMV-gfp-epi to larval fish has antimicrobial effects, without the drawbacks of introducing drug residues or inducing bacterial drug resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.