Abstract

The inhibition of the metastatic capability of cancer cells is a pivotal aim of current anticancer strategies. We investigated herein the anti-migrating and anti-invasive properties of Zebrafish embryo extracts (SL) - an integrative formula comprising morphogenetic factors extracted from zebrafish embryos - alone or in association with 5-Fluoro-Uracil (5-FU), when added to metastatic breast cancer cells (MDA-MB-231) and in normal epithelial breast cells (MCF10A) committed toward an inflammatory phenotype upon TGF-β1 stimulation. Invasiveness, migrating capability, cytoskeleton architecture and related molecular factors involved in the epithelial-mesenchymal transition were studied after treatment with 5-FU, with and without SL. Remarkably, in both circumstances, embryo extracts amplify the migratory inhibition triggered by the anticancer drug 5-Fu. The fact that such an effect is noticed in normal as well as in cancerous cells suggests that the critical target of embryo extracts is specifically represented by the migrating/invasive phenotype. However, while 5-FU was unable in antagonizing the invasiveness of cancerous cells, the association with SL can significantly impair the invasive capability of tumor cells. These findings are noticeably associated with the reversion of the EMT phenotype in SL-treated cells, as documented by the contemporary downregulation of TCTP and some EMT-related molecular effectors, like α-SMA and Vimentin. Embryo fish extracts significantly counteract the migrating and invasive phenotype of cancerous and inflammatory breast cells treated with the chemotherapeutic drug 5-FU. The availability of a compound able to amplify 5-Fu activity while significantly hampering the invasive phenotype of breast cancer should provide invaluable benefits, namely if we consider that this compound is substantially deprived of side-effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.