Abstract

Disseminated candidiasis is associated with 30–40% mortality in severely immunocompromised patients. Among the causal agents, Candida albicans is the dominant one. Various animal models have been developed for investigating gene functions in C. albicans. Zebrafish injection models have increasingly been applied in elucidating C. albicans pathogenesis because of the conserved immunity, prolific fecundity of the zebrafish and the low costs of care systems. In this study, we established a simple, noninvasive zebrafish egg bath infection model, defined its optimal conditions, and evaluated the model with various C. albicans mutant strains. The deletion of SAP6 did not have significant effect on the virulence. By contrast, the deletion of BCR1, CPH1, EFG1, or TEC1 significantly reduced the virulence under current conditions. Furthermore, all embryos survived when co-incubated with bcr1/bcr1, cph1/cph1 efg1/efg1, efg1/efg1, or tec1/tec1 mutant cells. The results indicated that our novel zebrafish model is time-saving and cost effective.

Highlights

  • The prevalence of invasive fungal infections has increased substantially because the size of populations at risk have increased [1, 2]

  • We found that all embryos eventually hatched if they were not killed by C. albicans cells after an additional 2 days of incubation

  • We identified the conditions for conducting zebrafish egg bath infection model

Read more

Summary

Introduction

The prevalence of invasive fungal infections has increased substantially because the size of populations at risk have increased [1, 2]. Mouse models are predominantly used for studying C. albicans pathogenesis, but are limited by difficulties in performing large-scale studies, high costs, and being time-consuming To overcome these limitations, investigators have developed several invertebrate models, such as fruit flies (Drosophila melanogaster), nematodes (Caenorhabditis elegans), and larvae of wax moths (Galleria mellonella) [8,9,10,11,12,13] models. Investigators have developed several invertebrate models, such as fruit flies (Drosophila melanogaster), nematodes (Caenorhabditis elegans), and larvae of wax moths (Galleria mellonella) [8,9,10,11,12,13] models They feature conserved innate immunity and inexpensive care systems and enable experiments to be performed on a large scale [14]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.