Abstract

Cysteine and glycine-rich protein 3 (CSRP3) is a striated muscle-specific cytoskeleton protein which participates in cardiac stretch sensing. Mutations in CSRP3 gene cause cardiomyopathies and deregulation of CSRP3 has been found in patients with heart failure and several skeletal muscle diseases. However, the mechanism underneath these disorders still remains poorly understood. Here we generated the first csrp3 knockout zebrafish. csrp3−/− embryos showed no gross morphological defects but csrp3 deficient skeletal muscle fibers were prone to lesions upon prolonged stretching force. Further studies revealed csrp3 cooperatively interacted with ilk to maintain skeletal muscle mechanical stability and regulated tcap activation. Thus, our work has established a zebrafish model to investigate the function of csrp3 gene, and provides novel insights towards how csrp3 defects may lead to skeletal myopathies by a mechanistic link between Csrp3 and force stimuli.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call