Abstract

Cdc25 phosphatases are required for eukaryotic cell cycle progression. To investigate mechanisms governing spatiotemporal dynamics of cell cycle progression during vertebrate development, we isolated two cdc25 genes from the zebrafish, Danio rerio, cdc25a, and cdc25d. We propose that Zebrafish cdc25a is the zebrafish orthologue of the tetrapod Cdc25A genes, while cdc25d is of indeterminate origin. We show that both genes have proliferation promoting activity, but that only cdc25d can complement a Schizosaccharomyces pombe loss of function cdc25 mutation. We present expression data demonstrating that cdc25d expression is very limited during early development, while cdc25a is widely expressed and consistent with the mitotic activity in previously identified mitotic domains of the post-blastoderm zebrafish embryo. Finally, we show that cdc25a can accelerate the entry of post-blastoderm cells into mitosis, suggesting that levels of cdc25a are rate limiting for cell cycle progression during gastrulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.