Abstract

There is considerable information on the clinical manifestations and mode of inheritance for many genetic chaperonopathies but little is known on the molecular mechanisms underlying the cell and tissue abnormalities that characterize them. This scarcity of knowledge is mostly due to the lack of appropriate animal models that mimic closely the human molecular, cellular, and histological characteristics. In this article we introduce zebrafish as a suitable model to study molecular and cellular mechanisms pertaining to human chaperonopathies. Genetic chaperonopathies manifest themselves from very early in life so it is necessary to examine the impact of mutant chaperone genes during development, starting with fertilization and proceeding throughout the entire ontogenetic process. Zebrafish is amenable to such developmental analysis as well as studies during adulthood. In addition, the zebrafish genome contains a wide range of genes encoding proteins similar to those that form the chaperoning system of humans. This, together with the availability of techniques for genetic manipulations and for examination of all stages of development, makes zebrafish the organism of choice for the analysis of the molecular features and pathogenic mechanisms pertaining to human chaperonopathies. J. Cell. Physiol. 231: 2107-2114, 2016. © 2016 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.