Abstract

We have previously reported that fish pathogens causing vibriosis specifically adhere to GM4 on the epithelial cells of fish intestinal tracts (Chisada, S., Horibata, Y., Hama, Y., Inagaki, M., Furuya, N., Okino, N., and Ito, M. (2005) Biochem. Biophys. Res. Commun. 333, 367-373). To identify the gene encoding the enzyme for GM4 synthesis in the fish intestinal tract, a phylogenetic tree of vertebrate ST3GalVs, including Danio rerio and Oryzias latipes, was generated in which two putative subfamilies of fish ST3GalVs were found. Two putative ST3GalVs of zebrafish (zST3GalV-1 and -2), each belonging to different subfamilies, were cloned from the zebrafish cDNA library. Interestingly, zST3GalV-1 synthesized GM3 (NeuAcalpha2-3Galbeta1-4Glcbeta1-1'Cer) but not GM4, whereas zSTGalV-2 synthesized both gangliosides in vitro when expressed in CHO-K1 and RPMI1846 cells. Flow cytometric analysis using anti-GM4 antibody revealed that the transformation of RPMI1846 cells with zST3GalV-2 but not zST3GalV-1 cDNA increased the cell-surface expression of GM4. Whole mount in situ hybridization showed that the zST3GalV-2 transcript was strongly expressed in the gastrointestinal tract, whereas zST3GalV-1 was expressed in the brain and esophagus but not gastrointestinal tract in 3-day post-fertilization embryos. It has long been a matter of controversy which enzyme is responsible for the synthesis of GM4 in mammals. We found that three isoforms of mouse ST3GalV (mST3GalV) having different N-terminal sequences can synthesize GM4 as well as GM3 when expressed in RPMI1846 and CHO-K1 cells. Furthermore, mST3GalV knock-out mice were found to lack GM4 synthase activity and GM4 in contrast to wild-type mice. These results clearly indicate that zST3GalV-2 and mST3GalV are the enzymes responsible for the synthesis of GM4 in zebrafish and mice, respectively.

Highlights

  • We have previously reported that fish pathogens causing vibriosis adhere to GM4 on the epithelial cells of fish intestinal tracts (Chisada, S., Horibata, Y., Hama, Y., Inagaki, M., Furuya, N., Okino, N., and Ito, M. (2005) Biochem

  • We found that three isoforms of mouse ST3GalV having different N-terminal sequences can synthesize GM4 as well as GM3 when expressed in RPMI1846 and CHO-K1 cells

  • We have reported that Vibrio harveyi causing fish vibriosis, a terminal hemorrhagic septicemia and serious disease for fish culture, adhere to the ganglioside GM4 (NeuAc␣2–3Gal␤11ЈCer) on the epithelial cells of the intestinal tract of red sea bream, Pagrus major [5]

Read more

Summary

Introduction

We have previously reported that fish pathogens causing vibriosis adhere to GM4 on the epithelial cells of fish intestinal tracts (Chisada, S., Horibata, Y., Hama, Y., Inagaki, M., Furuya, N., Okino, N., and Ito, M. (2005) Biochem. We found that three isoforms of mouse ST3GalV (mST3GalV) having different N-terminal sequences can synthesize GM4 as well as GM3 when expressed in RPMI1846 and CHO-K1 cells.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call