Abstract

Addiction and substance abuse are found ubiquitously throughout human society. In the United States, these disorders are responsible for amassing hundreds of billions of dollars in annual costs associated with healthcare, crime and lost productivity. Efficacious treatments remain few in number, the development of which will be facilitated by comprehension of environmental, genetic, pharmacological and neurobiological mechanisms implicated in the pathogenesis of addiction. Animal models such as the zebrafish (Danio rerio) have gained momentum within various domains of translational research, and as a model of complex brain disorders (e.g., drug abuse). Behavioral quantification within the conditioned place preference (CPP) paradigm serves as a measure of the rewarding qualities of a given substance. If the animal develops an increase in preference for the drug paired environment, it is inferred that the drug has positive-reinforcing properties. This paper discusses the utility of the zebrafish model in conjunction with the CPP paradigm and reports CPP behavior following acute exposure to 0.0%, 0.25%, 0.50%, and 1.00% alcohol, and 0 mg/L, 50 mg/L, 100 mg/L and 150 mg/L caffeine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call