Abstract

ABSTRACT ZEB2 has been shown to be upregulated in the brain tissues of rats with intracerebral hemorrhage (ICH), but its role in ICH-caused brain injury remains unclear. Here, an ICH rat model was established via intracerebral injection of autologous blood, and the lentivirus-mediated ZEB2 short hairpin RNA (sh-ZEB2) or negative control (scramble) were administered 0.5 hours after ICH. Silencing ZEB2 alleviated ICH-induced neurologic deficits and the increase of BBB permeability, brain water content and ZEB2 expression. Next, OGD (oxygen glucose deprivation) plus hemin was used to treat primary brain microvascular endothelial cells (BMECs) to simulate the ICH condition in vitro. OGD plus hemin upregulated ZEB2 expression and apoptosis, but reduced cell viability, migration, TEER (transendothelial electric resistance) and the expression of vascular-endothelial (VE-) cadherin, occludin and claudin-5, which was reversed by inhibiting ZEB2. Mechanism researches showed that ZEB2 interacted with MDM2 to up-regulate MDM2 protein expression, and then increased E2F1 protein level by suppressing its ubiquitination, which in turn promoted the transcription of ZEB2 to induce its protein expression, so as to enhance the interaction between ZEB2 and MDM2, thereby contributing to OGD plus hemin-induced endothelial dysfunction. Additionally, the joint interference of ZEB2 and MDM2 in vivo had better mitigative effects on ICH-induced brain injury compared with silencing ZEB2 alone. In summary, ZEB2 interacted with MDM2 to promote BMEC dysfunction and brain damage after ICH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call