Abstract

Zeaxanthin is a nutritional carotenoid with a considerable amount of safety data based on regulatory studies, which form the basis of its safety evaluation. Subchronic OECD guideline studies with mice and rats receiving beadlet formulations of high purity synthetic zeaxanthin in the diet at dosages up to 1000 mg/kg body weight (bw)/day, and in dogs at over 400 mg/kg bw/day, produced no adverse effects or histopathological changes. In developmental toxicity studies, there was no evidence of fetal toxicity or teratogenicity in rats or rabbits at dosages up to 1000 or 400 mg/kg bw/day, respectively. Formulated zeaxanthin was not mutagenic or clastogenic in a series of in vitro and in vivo tests for genotoxicity. A 52-week chronic oral study in Cynomolgus monkeys at doses of 0.2 and 20 mg/kg bw/day, mainly designed to assess accumulation and effects in primate eyes, showed no adverse effects. In a rat two-generation study, the NOAEL was 150 mg/kg bw/day. In 2012, this dosage was used by EFSA (NDA Panel), in association with a 200-fold safety factor, to propose an Acceptable Daily Intake equivalent to 53 mg/day for a 70 kg adult. The requested use level of 2 mg/day was ratified by the EU Commission.

Highlights

  • Zeaxanthin (3, 3󸀠-dihydroxy-β-carotene, CAS number 14468-3) is a nutritional carotenoid in a category referred to as xanthophylls

  • The toxicology studies undertaken by DSM were predominantly undertaken using recognized international regulatory guidelines and, in particular, respective Organization for Economic Cooperation and Development (OECD) guidelines

  • The macroscopic observation of yellow discoloration of the adipose tissue, which can be attributed to the presence of the zeaxanthin, indicates that there was systemic exposure in these studies and this has been analytically confirmed by analysis of plasma and liver samples in the two-generation rat study

Read more

Summary

Introduction

Zeaxanthin (3, 3󸀠-dihydroxy-β-carotene, CAS number 14468-3) is a nutritional carotenoid in a category referred to as xanthophylls. Zeaxanthin is structurally closely similar to lutein. The intake of both carotenoids in the human diet is regarded as healthy, with these components reflecting an adequate intake of fruit and vegetables. Lutein as a human dietary supplement is often obtained as an extract from Tagetes (marigold) and the extract always contains some zeaxanthin. Zeaxanthin itself, on the other hand, tends to be produced from both biological sources and in a highly pure form synthetically. The predominant zeaxanthin stereoisomer in nature and in the diet is the 3R, 3R󸀠-stereoisomer, which is the predominant stereoisomer of synthetic zeaxanthin (Figure 1)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call