Abstract
BackgroundZearalenone (ZEA) is a resorcylic acid lactone derivative derived from various Fusarium species that are widely found in food and feeds. The molecular structure of ZEA resembles that of the mammalian hormone 17β-oestradiol, thus zearalenone and its metabolites are known to compete with endogenous hormones for estrogen receptors binding sites and to activate transcription of oestrogen-responsive genes. However, the effect of long-term low-dose ZEA exposure on the reproductive response to Bacillus subtilis ANSB01G culture for first-parity gilts has not yet been investigated. This study was conducted to investigate the toxic effects of ZEA as an estrogen receptor selective modulator and the alleviating effects of Bacillus subtilis ANSB01G cultures as ZEA biodegraders in pregnant sows during their first parity.ResultsA total of 80 first-parity gilts (Yorkshire × Landrace) were randomly assigned to four dietary treatments during gestation: CO (positive control); MO (negative control, 246 μg ZEA/kg diet); COA (CO + B. subtilis ANSB01G culture with 2 × 109 CFU/kg diet); MOA (MO + B. subtilis ANSB01G culture with 2 × 109 CFU/kg diet). There were 20 replications per treatment with one gilt per replicate. Feeding low-dose ZEA naturally contaminated diets disordered most of reproductive hormones secretion and affected estrogen receptor-α and estrogen receptor-β concentrations in serum and specific organs and led to moderate histopathological changes of gilts, but did not cause significant detrimental effects on reproductive performance. The addition of Bacillus subtilis ANSB01G culture to the diet can effectively relieve the competence of ZEA to estrogen receptor and the disturbance of reproductive hormones secretion, and then ameliorate toxicosis of ZEA in gilts.ConclusionsCollectively, our study investigated the effects of feeding low-dose ZEA on reproduction in pregnant sows during their first parity. Feeding low-dose ZEA could modulate estrogen receptor-α and -β concentrations in specific organs, cause disturbance of reproductive hormones and vulva swelling, and damage organ histopathology and up-regulate apoptosis in sow models. Diet with Bacillus subtilis ANSB01G alleviated negative effects of the ZEA on gilts to some extent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.