Abstract

A 48 kDa Zingiber montanum cysteine protease glycoprotein (ZCPG) purified previously was studied for anti-inflammatory and acetylcholinesterase inhibitory activity. The lipoxygenase inhibition by ZCPG was linear, with an IC50 value of 2.25 μM. MTT, LDH, and cell cycle analysis in THP-1 derived macrophages corroborate no significant cytotoxicity at a lower concentration. ZCPG inhibited the production of nitric oxide, reactive oxygen species, and pro-inflammatory cytokines such as interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α) in lipopolysaccharide-stimulated THP-1 macrophages. In contrast, an increase in the production of interleukin-10, an anti-inflammatory cytokine, was observed. A reverse-transcription polymerase chain reaction study further confirmed that ZCPG inhibited the expression of IL-1β, inducible nitric oxide synthase, and TNF-α by suppressing their mRNA transcription and expression in LPS stimulated THP-1 macrophages. Furthermore, the nature of acetylcholinesterase (AChE) inhibition by ZCPG is dose-dependent, competitive, and reversible. The AChE inhibitory activity was stable in a broad range of temperatures and pH. In vitro data were further validated by molecular interaction studies with a detailed inspection of the ZCPG probable binding modes in the active sites of AChE that provides the lead to deliver the structural determinants necessary for the activity towards AChE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call