Abstract

Keloids are fibroproliferative skin disorders caused by the improper healing of wounded skin. A growing body of evidence suggests the involvement of N6-Methyladenosine (m6A) modification in various bioprocesses; however, its role in keloid formation has not yet been investigated. The aim of this study was to determine the effect of the m6A regulator zinc finger CCCH domain containing protein 13 (ZC3H13) on the pathogenesis of keloid formation. ZC3H13 and homeodomain-interacting protein kinase 2 (HIPK2) expression was evaluated in healthy skin and keloid tissues, as well as in human dermal fibroblasts and human keloid fibroblasts (HKF), using qRT-PCR and western blotting. The effects of ZC3H13 overexpression and knockdown on the cell function of HKFs were assessed using CCK8, transwell, and flow cytometry. Furthermore, the influence of ZC3H13 on HIPK2 m6A modification was assessed using MeRIP-qPCR and mRNA stability assays. Both ZC3H13 expression and m6A RNA methylation were upregulated in keloid tissues and HKFs. Silencing of ZC3H13 inhibited proliferation and migration, while enhancing apoptosis in HKFs, whereas overexpression had the opposite effect. Furthermore, HIPK2 levels were high in keloid tissues and HKFs, and a positive correlation was observed between ZC3H13 and HIPK2. In HKFs, ZC3H13 overexpression elevated the m6A levels of HIPK2 mRNA and reduced the rate of HIPK2 mRNA degradation. Mechanically, ZC3H13-induced m6A modifications significantly improved HIPK2 mRNA stability. Collectively, ZC3H13 accelerated keloid formation by mediating the m6A modification of HIPK2 mRNA and maintaining its stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call