Abstract

We study the mass spectra of hidden-charm tetraquark systems with quantum numbers (IG)JP = (1+)1+ (and their I = 12\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\frac{1}{2} $$\\end{document} partners) using QCD sum rules. The analysis incorporates the complete next-to-leading order (NLO) contribution to the perturbative QCD part of the operator product expansions, with particular attention to operator mixing effects due to renormalization group evolution. We find that both the parametric dependence and the perturbative convergence are significantly improved for the two mixed operators J1,5Mixed\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {J}_{1,5}^{\ extrm{Mixed}} $$\\end{document} and J2,6Mixed\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {J}_{2,6}^{\ extrm{Mixed}} $$\\end{document}, compared with those for the unmixed meson-meson or diquark-antidiquark type ones. For the d¯cc¯u\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\overline{d}c\\overline{c}u $$\\end{document} system, the masses of J1,5Mixed\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {J}_{1,5}^{\ extrm{Mixed}} $$\\end{document} and J2,6Mixed\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {J}_{2,6}^{\ extrm{Mixed}} $$\\end{document} are determined to be 3.89−0.12+0.18\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {3.89}_{-0.12}^{+0.18} $$\\end{document} GeV and 4.03−0.07+0.06\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {4.03}_{-0.07}^{+0.06} $$\\end{document} GeV, respectively, closely matching those of Zc(3900) and Zc(4020). Similarly, for the s¯cc¯u\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\overline{s}c\\overline{c}u $$\\end{document} states, the masses of J1,5Mixed\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {J}_{1,5}^{\ extrm{Mixed}} $$\\end{document} and J2,6Mixed\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {J}_{2,6}^{\ extrm{Mixed}} $$\\end{document} are found to be 4.02−0.09+0.17\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {4.02}_{-0.09}^{+0.17} $$\\end{document} GeV and 4.21−0.07+0.08\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {4.21}_{-0.07}^{+0.08} $$\\end{document} GeV, respectively, in close proximity to Zcs(3985)/Zcs(4000) and Zcs(4220), consistent with the expectation that they are the partners of Zc(3900) and Zc(4020). Our results highlight the crucial role of operator mixing, an inevitable effect in a complete NLO calculation, in achieving a robust phenomenological description for the tetraquark system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.