Abstract

Memory B cell responses are more rapid and of greater magnitude than are primary Ab responses. The mechanisms by which these secondary responses are eventually attenuated remain unknown. We demonstrate that the transcription factor ZBTB32 limits the rapidity and duration of Ab recall responses. ZBTB32 is highly expressed by mouse and human memory B cells but not by their naive counterparts. Zbtb32(-/-) mice mount normal primary Ab responses to T-dependent Ags. However, Zbtb32(-/-) memory B cell-mediated recall responses occur more rapidly and persist longer than do control responses. Microarray analyses demonstrate that Zbtb32(-/-) secondary bone marrow plasma cells display elevated expression of genes that promote cell cycle progression and mitochondrial function relative to wild-type controls. BrdU labeling and adoptive transfer experiments confirm more rapid production and a cell-intrinsic survival advantage of Zbtb32(-/-) secondary plasma cells relative to wild-type counterparts. ZBTB32 is therefore a novel negative regulator of Ab recall responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.