Abstract

Receptor-interacting protein kinase 1 (RIPK1) regulates cell fate and proinflammatory signaling downstream of multiple innate immune pathways, including those initiated by TNF-α, TLR ligands, and IFNs. Genetic ablation of Ripk1 results in perinatal lethality arising from both RIPK3-mediated necroptosis and FADD/caspase-8-driven apoptosis. IFNs are thought to contribute to the lethality of Ripk1-deficient mice by activating inopportune cell death during parturition, but how IFNs activate cell death in the absence of RIPK1 is not understood. In this study, we show that Z-form nucleic acid binding protein 1 (ZBP1; also known as DAI) drives IFN-stimulated cell death in settings of RIPK1 deficiency. IFN-activated Jak/STAT signaling induces robust expression of ZBP1, which complexes with RIPK3 in the absence of RIPK1 to trigger RIPK3-driven pathways of caspase-8-mediated apoptosis and MLKL-driven necroptosis. In vivo, deletion of either Zbp1 or core IFN signaling components prolong viability of Ripk1-/- mice for up to 3 mo beyond parturition. Together, these studies implicate ZBP1 as the dominant activator of IFN-driven RIPK3 activation and perinatal lethality in the absence of RIPK1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.