Abstract
1. Inhibition of I(f) or ICa by zatebradine has been reported in mammalian SA nodal cells. We thus investigated whether zatebradine differentially attenuates the positive chronotropic and inotropic responses to norepinephrine, isoproterenol, NKH 477 (an adenylyl cyclase activator), 3-isobutyl-1-methylxanthine (IBMX) and Bay k 8644 (a calcium channel agonist) in the isolated, blood-perfused dog atrium. 2. When zatebradine (0.03-1 mumol) decreased sinus rate from 104 +/- 4.5 to 73 +/- 4.9 beats/min dose-dependently, it selectively attenuated the positive chronotropic but not inotropic responses to norepinephrine in a dose-related manner. Zatebradine decreased the norepinephrine-induced tachycardia (by approximately 80% from the control) more effectively than the spontaneous sinus rate (by approximately 30% from the control). 3. Zatebradine similarly attenuated the positive chronotropic but not inotropic responses to isoproterenol, NKH 477 and IBMX. Fifty per cent inhibition doses of zatebradine (0.10-0.18 mumol) for the chronotropic responses to each substance were not significantly different. 4. On the other hand, zatebradine attenuated neither positive chronotropic nor inotropic responses to Bay k 8644. 5. We therefore suggest that zatebradine selectively attenuates the positive chronotropic but not inotropic responses to cyclic AMP-related substances due to inhibition of I(f) but not ICa in the dog heart.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Clinical and Experimental Pharmacology and Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.