Abstract

The article presents an electric current sensor built of a fiber-optic differential interferometer using the Faraday effect in a single-mode fiber. It was applied to measure current waveforms with large amplitudes and mains frequency. The optical sensor does not introduce additional resistance and inductance into the measured circuit, which is a desirable phenomenon in this type of measurements. The magnetosensitive element is an optical fiber coil made of a quartz single-mode telecommunications fiber. The optical fiber, in which the core is twisted around its axis, is characterized by a small influence of disturbing quantities, i.e., mechanical vibrations and pressure changes, on the working of the differential interferometer by inducing linear birefringence in the glass fiber. The methods of elimination of the quantities influencing the operation of the optical fiber current sensor were proposed by reducing the linear birefringence induced in the optical fiber from these quantities. The dependence of the normalized light intensity was plotted. The results of experimental research on a design solution of a differential interferometer based on the Faraday effect, operating at a wavelength of 1550 nm, are presented. The sensor was used for measurements of sinusoidal current with a frequency of 50 Hz and amplitudes ranging 100–1500 A. The uncertainty of measurement of the electric current amplitude was determined in the range of the measured values, which was estimated at no more than 1.5 %.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call