Abstract

Linear differential algebraic groups (LDAGs) appear as Galois groups of systems of linear differential and difference equations with parameters. These groups measure differential-algebraic dependencies among solutions of the equations. LDAGs are now also used in factoring partial differential operators. In this paper, we study Zariski closures of LDAGs. In particular, we give a Tannakian characterization of algebraic groups that are Zariski closures of a given LDAG. Moreover, we show that the Zariski closures that correspond to representations of minimal dimension of a reductive LDAG are all isomorphic. In addition, we give a Tannakian description of simple LDAGs. This substantially extends the classical results of P. Cassidy and, we hope, will have an impact on developing algorithms that compute differential Galois groups of the above equations and factoring partial differential operators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.