Abstract

Each year, Neisseria gonorrhoeae (Ngo) causes over 1.5 million new infections in the United States, and >87 million worldwide. The absence of a vaccine for preventing gonorrhea, the rapid emergence of multidrug-resistant and extremely drug-resistant Ngo strains, and the limited number of antibiotics available for treating gonorrhea underscore the importance of developing new modalities for addressing Ngo infection. Here, we describe DNA-based microbicides that kill Ngo but not commensals. Previously, we showed that Ngo is killed when it takes up differentially methylated DNA with homology to its genome. We exploited this Achilles heel to develop a new class of microbicides for preventing Ngo infection. These microbicides consist of DNA molecules with specific sequences and a methylation pattern different from Ngo DNA. These DNAs kill low-passage and antibiotic-resistant clinical isolates with high efficiency but leave commensals unharmed. Equally important, the DNAs are equally effective against Ngo whether they are in buffered media or personal lubricants. These findings illustrate the potential of this new class of practical, low-cost, self-administered DNA-based microbicides for preventing Ngo transmission during sexual intercourse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.