Abstract

In constrained linear model predictive control a quadratic program must be solved on-line at each control step. If zero is feasible the resultant static nonlinearity is sector bound. We show that the nonlinearity is also monotone nondecreasing and slope restricted; furthermore it may be expressed as the gradient of a convex potential function. Hence we show the existence of Zames-Falb multipliers for such a nonlinearity. For completeness, we construct such multipliers both for the general case of multi-input multi-output static nonlinearities and for the particular case where the nonlinearity arises from a quadratic program. We also express the results in terms of integral quadratic constraints. These multipliers may be used in a general and versatile analysis of the robust stability of constrained model predictive control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.