Abstract

We investigate the Bose-Hubbard chain in the presence of nearest-neighbor pairing. The pairing term gives rise to an unusual gapped $\mathbb{Z}_2$ Ising phase that has number fluctuation but no off-diagonal long range order. This phase has a strongly correlated many-body doubly degenerate ground state which is effectively a gap-protected macroscopic qubit. In the strongly interacting limit, the system can be mapped onto an anisotropic transverse spin chain, which in turn can be mapped to the better-known fermionic sister of the paired Bose-Hubbard chain: the Kitaev chain which hosts zero-energy Majorana bound states. While corresponding phases in the fermionic and bosonic systems have starkly different wavefunctions, they share identical energy spectra. We describe a possible cold-atom realization of the paired Bose-Hubbard model in a biased zig-zag optical lattice with reservoir-induced pairing, opening a possible route towards experimental Kitaev chain spectroscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call