Abstract
During the synthesis of deep-blue perovskite quantum dots (PQDs), they generally emerge as a two-dimensional byproduct with poor yield and low photoluminescence quantum yield (PLQY) due to amine ligand enrichment-induced abundant surface defects. Herein, we provide a colloidal synthesis method to prepare deep-blue CsPbBr3 PQDs in a green nontoxic solvent via strategic Z-type ligand engineering. Z-type ligands of zinc octanoate enable the formation of robust coordination bonds with surface bromide ions of PQDs, maintaining acid-base equilibrium and reducing excess amine enrichment on the PQDs surface. Consequently, homogeneous and monodispersed PQDs with improved PLQY of 73% are successfully synthesized, achieving efficient deep-blue LEDs with a peak EQE of 5.46%, a maximum luminance of 847.6 cd/m2, and an operational half-lifetime of 14 min. The devices exhibit color coordinates of (0.137, 0.049), closely approximating the Rec. 2020 blue standard. Our work offers a potentially eco-friendly and viable route for realizing high-performance LEDs in the deep-blue region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.