Abstract
In this paper, the Z-source converter is introduced to power factor correction (PFC) applications. The concept is demonstrated through a wireless power transfer (WPT) system for electric vehicle battery charging, namely Z-source resonant converter (ZSRC). Due to the Z-source network (ZSN), the ZSRC inherently performs PFC and regulate the system output voltage simultaneously, without adding extra semiconductor devices and control circuitry to the conventional WPT system such as conventional PFC converters do. In other words, the ZSN can be categorized as a family of the single-stage PFC converters. In addition, the ZSN is suitable for high-power applications since it is immune to shoot-through states, which increases reliability and adds a boost feature to the system. The ZSRC-based WPT system operating principle is described and analyzed in this paper. Simulations and experimental results based on a 1-kW prototype with 20-cm air gap between the system primary and secondary sides are presented to validate the analysis and demonstrate the effectiveness of the ZSN in the PFC of the WPT system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.