Abstract

Electric vehicles have gained considerable attention recently due to the ever increasing demand for a viable alternative to the current fossil fuel-dependent modes of transportation. These automobiles are reliant on power electronics to generate the energy required for the motor. Traditional converters, namely the V-source (VS) and C-source (CS), are vulnerable to EMI noise, their main circuits cannot be interchangeable and they are either a boost or a buck converter. Therefore, their output voltage is strictly higher or lower than the input voltage. In an effort to negate these drawbacks, new inverters such as the Z-source were conceptualized. This work aims to study the applicability of the Z-source in the traction chain of an electric vehicle in order to feed a permanent magnet synchronous motor (PMSM). The latter is controlled with field oriented vector control reinforced with a backstepping technique in an attempt to ensure tracking ability and robustness. Energy management is also supported in this article in an effort to optimize the performance of the electric vehicle under different operating conditions. The simulation results show the effectiveness of the proposed system in enhancing the energy management of the vehicle, in addition to its simplicity which can facilitate an eventual implementation using a DSP or a Dspace platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.