Abstract

Z-Scheme MoS2/g-C3N4 heterojunction photocatalysts were fabricated using a hydrothermal deposition procedure together with a calcination route, and then applied for CO2 photoreduction. Experimental results indicated that the 10% MoS2/g-C3N4 heterojunction displayed the best photocatalytic performance. Furthermore, the maximum CO yields of 58.59 μmol (g-cat)-1 under 7 h-visible light irradiation was up to 2.94 times that of the unadulterated g-C3N4. The enhanced photocatalytic performance of 10% MoS2/g-C3N4 catalyst was due to the favored visible light response, the efficient separation of photogenerated electron-hole pairs as well as its larger specific surface area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.