Abstract

Left-handed double-helical Z-RNA has been studied using the ribohexanucleotide pentaphosphate r(CpGpCpGpCpG). One-dimensional and two-dimensional proton nmr experiments were used to probe the structural details of the left-handed helix in concentrated sodium perchlorate solution. In 1M NaClO4 the RNA adopts the normal A-form double helix, and in 6M NaClO4 it is nearly all in the Z form. In 4M NaClO4 it exists as nearly equal parts of A form and Z form. Resonances corresponding to both A and Z form appear in the nmr spectrum, indicating that the duplex exchanges slowly between forms. Spin-spin coupling constants between protons in the ribose rings were used to determine the sugar-pucker conformations of the individual nucleotides. Quantitative nuclear Overhauser experiments were used to determine proton-proton distances within the nucleoside, and from these distances values for the glycosidic torsion angle were determined. The results show that the cytidines adopt C2'-endo sugar puckers (S type) with pseudo-rotation phase values (P) of approximately 165 degrees. The bases are in the anti conformation, with chi values of approximately -140 degrees. The internal guanosines adopt C3'-endo sugar puckers (N type) with P approximately 18 degrees, while the 3'-terminal guanosine ribose exists in an equilibrium between S- and N-type conformations. All three guanosine bases adopt the syn conformation, with chi approximately 70 degrees. The results indicate that the solution structure of Z-RNA is very similar to that of Z-DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.