Abstract

In this study, green synthesized Ag/CaO combined with a reducing agent based on a plant extract was synthesized. Then, the catalytic and antimicrobial potential of extract doped-Ag/CaO was investigated. Bio-reducing synthesis protocol was followed to fabricate Ag/CaO nanocomposites (NCs) by reducing and capping with Zingiber officinale. A series of characterization techniques was employed to examine structural, morphological and optical properties of Ag/CaO. The experimental findings favored doped nanocomposites for use as effective catalysts that degraded toxic dyes such as methylene blue and ciprofloxacin and exhibited strong antimicrobial activity against Escherichia coli (E. coli), and Staphylococcus aureus (S. aueus). Furthermore, a molecular docking investigation determined binding interaction patterns between NCs and targeted cell protein active sites. The obtained results suggested green synthesized Ag/CaO as the most effective inhibitor of dihydrofolate reductase, DNA gyrase, and FabB enzymes. Findings revealed highly economical, non-toxic, and readily available Z. officinale rhizome extract as a potential capping agent to fabricate Ag/CaO for potential applications to reduce major economic losses in the dairy industry for the first time in Pakistan.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.