Abstract
The concept of Z-equilibrium has been introduced by Zhuk-ovskii (Mathematical Methods in Operations Research. Bulgarian Academy of Sciences, Sofia (1985) 103–195) for games in normal form. This concept is always Pareto optimal and individually rational for the players. Moreover, Pareto optimal Nash equilibria are Z-equilibria. We consider a bi-matrix game whose payoffs are uncertain variables. By appropriate ranking criteria of Liu uncertainty theory, we introduce some concepts of equilibrium based on Z-equilibrium for such games. We provide sufficient conditions for the existence of the introduced concepts. Moreover, using mathematical programming, we present a procedure for their computation. A numerical example is provided for illustration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.