Abstract

Parafermionic zero modes are a novel set of excitations displaying non-Abelian statistics somewhat richer than that of Majorana modes. These modes are predicted to occur when nearby fractional quantum Hall edge states are gapped by an interposed superconductor. Despite substantial experimental progress, we argue that the necessary crossed Andreev reflection in this arrangement is a challenging milestone to reach. We propose a superconducting quantum dot array structure on a fractional quantum Hall edge that can lead to parafermionic zero modes from coherent superconducting forward scattering on a quantum Hall edge. Such coherent forward scattering has already been demonstrated in recent experiments. We show that for a spin-singlet superconductor interacting with loops of spin unpolarized 2/3 fractional quantum edge, even an array size of order 10 should allow one to systematically tune into a parafermionic degeneracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.