Abstract

We present a possible generalization of the exterior differential calculus, based on the operator d such that d^3=0, but d^2\not=0. The first and second order differentials generate an associative algebra; we shall suppose that there are no binary relations between first order differentials, while the ternary products will satisfy the cyclic relations based on the representation of cyclic group Z_3 by cubic roots of unity. We shall attribute grade 1 to the first order differentials and grade 2 to the second order differentials; under the associative multiplication law the grades add up modulo 3. We show how the notion of covariant derivation can be generalized with a 1-form A, and we give the expression in local coordinates of the curvature 3-form. Finally, the introduction of notions of a scalar product and integration of the Z_3-graded exterior forms enables us to define variational principle and to derive the differential equations satisfied by the curvature 3-form. The Lagrangian obtained in this way contains the invariants of the ordinary gauge field tensor F_{ik} and its covariant derivatives D_i F_{km}.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call