Abstract

Stroke can lead to the serious long-term neurological disability. The dysregulation of long non-coding RNAs (lncRNAs) has been proven to be a pivotal factor for the progression of ischemic stroke. However, it is largely unknown whether lncRNAs regulated the OGD/R injury of cerebral microglial cells. In this study, we designed experiments to reveal the role of lncRNA Nuclear Enriched Abundant Transcript 1 (NEAT1) in the OGD/R injury of microglial cells. We found that NEAT1 contributed to the OGD/R injury and neuroinflammation damage in microglial cells. Moreover, the molecular mechanism involved in the NEAT1-mediated OGD/R injury. Mechanism investigation revealed that NEAT1 was upregulated by the transcription factor YY1. Moreover, Western blot analysis suggested that NEAT1 enhance the protein levels of core factors of Wnt/β-catenin signaling pathway, indicating that NEAT1 contributed to the activation of Wnt/β-catenin signaling pathway. Rescue assays were carried out in the microglial cells treated with OGD/R. The results showed that NEAT1 regulated the OGD/R injury and neuroinflammation damage via Wnt/β-catenin signaling pathway. In conclusion, our findings suggested that YY1-induced upregulation of NEAT1 contributed to the OGD/R injury and neuroinflammation damage of microglial cells via Wnt/β-catenin signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call