Abstract
BackgroundThe transcription factor Yin Yang 1 (YY1) is a ubiquitously expressed, multifunctional protein that controls a large number of genes and biological processes in vertebrates. As a general transcription factor, the proper levels of YY1 protein need to be maintained for the normal function of cells and organisms. However, the mechanism for the YY1 homeostasis is currently unknown.ResultsThe current study reports that the YY1 gene locus of all vertebrates contains a cluster of its own DNA-binding sites within the 1st intron. The intact structure of these DNA-binding sites is absolutely necessary for transcriptional activity of the YY1 promoter. In an inducible cell line system that over-expresses an exogenous YY1 gene, the overall increased levels of YY1 protein caused a reduction in transcription levels of the endogenous YY1 gene. Reversion to the normal levels of YY1 protein restored the transcriptional levels of the endogenous YY1 to normal levels. This homeostatic response was also mediated through its cluster of YY1 binding sites.ConclusionTaken together, the transcriptional level of YY1 is self-regulated through its internal DNA-binding sites. This study identifies YY1 as the first known autoregulating transcription factor in mammalian genomes.
Highlights
The transcription factor Yin Yang 1 (YY1) is a ubiquitously expressed, multifunctional protein that controls a large number of genes and biological processes in vertebrates
The Gli-Kruppel-type transcription factor Yin Yang 1 (YY1) is a ubiquitously expressed, multifunctional protein that can function as an activator, repressor, or initiator binding protein depending on its promoter context, chromatin structure, and interacting proteins [1,2]
Our results demonstrated that changes in the cellular levels of YY1 protein affect the transcriptional levels of its own locus, YY1, most likely through its own binding sites
Summary
The transcription factor Yin Yang 1 (YY1) is a ubiquitously expressed, multifunctional protein that controls a large number of genes and biological processes in vertebrates. YY1 plays important roles in a number of biological processes, including cell cycle control, embryogenesis, viral infection, programmed cell death, oncogenesis, Polycomb Group (PcG) function and B-cell development [6]. Since it is a general transcription factor involved in so many pathways, the expression levels of YY1 must be tightly monitored for the survival of cells and organisms [4]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.