Abstract

In analyzing cis-regulatory elements important for cell cycle control of the replication-dependent hamster histone H3.2 gene, we discovered a binding site for the transcription factor YY1 embedded within GC-rich sequences between the two tandem CCAAT repeats proximal to the TATA element. Base mutations that specifically eliminated YY1 binding resulted in suppression of the S phase induction of the H3.2 promoter. In addition, we discovered that YY1 is an interactive partner of AP-2, which also binds the H3.2 promoter and regulates its cell cycle-dependent expression. The critical domains for YY1 and AP-2A interaction are mapped, revealing that the N-terminal portion of YY1 (amino acids 1-300) and the DNA-binding/dimerization region of AP-2A are required. Our results suggest that YY1, acting as a transcription factor binding to its site on the promoter, or through protein-protein interaction with AP-2, may be part of a regulatory network including key cell cycle regulators such as c-Myc and Rb in controlling growth- and differentiation-regulated gene expression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.