Abstract

YWHAE gene product belongs to the 14-3-3 protein family that mediates signal transduction in plants and mammals. Protein-coding and non-coding RNA (lncRNA) transcripts have been reported for this gene in human. Here, we aimed to functionally characterize YWHAE-encoded lncRNA in colorectal cancer-originated cells. RNA-seq analysis showed that YWHAE gene is upregulated in colorectal cancer specimens. Additionally, bioinformatics analysis suggested that YWHAE lncRNA sponges miR-323a-3p and miR-532-5p that were predicted to target K-Ras 3'UTR sequence. Overexpression of YWHAE lncRNA resulted in upregulation of K-Ras gene expression, while overexpression of both miR-323a-3p and miR-532-5p had an inverse effect, detected by RT-qPCR. Consistently, western blot analysis confirmed that YWHAE lncRNA overexpression upregulated K-Ras/Erk1/2 and PI3K/Akt signaling pathways, while miR-323a-3p and miR-532-5p overexpression suppressed both pathways in HCT116 cells. Furthermore, dual luciferase assay validated the direct interaction of miR-323a-3p and miR-532-5p with K-Ras 3'UTR sequence and supported the sponging effect of YWHAE lncRNA over both miRNAs. These results suggested YWHAE lncRNA as an oncogene that exerts its effect through sponging miR-323a-3p and miR-532-5p and in turn, upregulates K-Ras/Erk1/2 and PI3K/Akt signaling pathways. Consistently, flow cytometry analysis, MTT assay and measuring cyclin D1 gene expression, confirmed the cell cycle stimulatory effect of YWHAE lncRNA, while miR-323a-3p and miR-532-5p showed an inhibitory effect on cell cycle progression. Finally, wound-healing assay supported the cell migratory effect of YWHAE lncRNA in HCT116 cells. This study identified a novel mechanism involving YWHAE-encoded lncRNA, miR-323a-3p and miR-532-5p in regulating HCT116 cell survival and suggested a potential therapeutic avenue for colorectal cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.