Abstract

Yunnan Baiyao is a traditional Chinese herbal remedy that has long been used for its characteristics of wound healing, bone regeneration, and anti-inflammation. However, the effects of Yunnan Baiyao on the odonto/osteogenic differentiation of stem cells from apical papilla (SCAPs) and the potential mechanisms remain unclear. The aim of this study was to investigate the odonto/osteogenic differentiation effects of Yunnan Baiyao on SCAPs and the underlying mechanisms involved. SCAPs were isolated and cocultured with Yunnan Baiyao conditioned media. The proliferation ability was determined by cell counting kit 8 and flow cytometry. The differentiation capacity and the involvement of NF-κB pathway were investigated by alkaline phosphatase assay, alizarin red staining, immunofluorescence assay, real-time RT-PCR, and western blot analyses. Yunnan Baiyao conditioned medium at the concentration of 50 μg/mL upregulated alkaline phosphatase activity, induced more mineralized nodules, and increased the expression of odonto/osteogenic genes/proteins (e.g., OCN/OCN, OPN/OPN, OSX/OSX, RUNX2/RUNX2, ALP/ALP, COL-I/COL-I, DMP1, DSP/DSPP) of SCAPs. In addition, the expression of cytoplasmic phos-IκBα, phos-P65, and nuclear P65 was significantly increased in Yunnan Baiyao conditioned medium treated SCAPs in a time-dependent manner. Conversely, the differentiation of Yunnan Baiyao conditioned medium treated SCAPs was obviously inhibited when these stem cells were cocultured with the specific NF-κB inhibitor BMS345541. Yunnan Baiyao can promote the odonto/osteogenic differentiation of SCAPs via the NF-κB signaling pathway.

Highlights

  • Immature permanent teeth with necrotic pulps have always been a challenge to many endodontists [1]

  • The X-ray diffractogram demonstrated that the major crystal structure of Yunnan Baiyao (YNB) was CaC2O4⋅H2O (Figure 1(a))

  • To investigate the effects of YNB on the Alkaline Phosphatase (ALP) activity, SCAPs were treated with different concentrations of YNB conditioned media (YNB-CM) for 3 days and 5 days, respectively, 20-200 μg/mL YNB-CM elevated the ALP activity of SCAPs as compared with the untreated group, in which 50 μg/mL YNB-CM treated cells showed the highest ALP activity among all groups (Figure 1(b))

Read more

Summary

Introduction

Immature permanent teeth with necrotic pulps have always been a challenge to many endodontists [1]. Calcium hydroxide and mineral trioxide aggregate (MTA) are being used to induce the pulp revascularization or apexification at the root apex [3, 4]. Previous histological studies have indicated that MTA stimulates tissue regeneration and bone repair. Dentinogenesis is induced more effectively in MTA group than calcium hydroxide group [5]. There is still the risk of high cytotoxicity, weakened radicular dentin, horizontal root fracture, especially at the cervical area, and crown discoloration [6]. Some categories including MTA and ZnOE are capable of inducing intrinsic staining after interacting with dentin, causing an alteration of the outward

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call