Abstract

We analyse the structure of Yukawa couplings in local SU(5) F-theory models with $E_8$ enhancement. In this setting the $E_8$ symmetry is broken down to SU(5) by a 7-brane configuration described by T-branes, all the Yukawa couplings are generated in the vicinity of a point and only one family of quarks and leptons is massive at tree-level. The other two families obtain their masses when non-perturbative effects are taken into account, being hierarchically lighter than the third family. However, and contrary to previous results, we find that this hierarchy of fermion masses is not always appropriate to reproduce measured data. We find instead that different T-brane configurations breaking $E_8$ to SU(5) give rise to distinct hierarchical patterns for the holomorphic Yukawa couplings. Only some of these patterns allow to fit the observed fermion masses with reasonable local model parameter values, adding further constraints to the construction of F-theory GUTs. We consider an $E_8$ model where such appropriate hierarchy is realised and compute its physical Yukawas, showing that realistic charged fermions masses can indeed be obtained in this case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.