Abstract

Ceramic samples of La0.1YxSr0.9–xTiO3 with different yttrium concentration have been synthesized by conventional solid state reaction technique, and their thermoelectric properties have been investigated. X-ray diffraction characterization confirms that the main crystal structure is of perovskite, but with a small amount of second phase of Y2Ti2O7 for samples with x = 0.05, 0.08, and 0.10. SEM images indicate all ceramic samples are dense and compact, and the largest grain size appears in sample with x = 0.03 and 0.05. Also the second phase can also be identified from the SEM images for x = 0.05, 0.08, and 0.10 samples. Electrical conductivity and Seebeck coefficient of samples have been measured in the temperature range between 300 and 1100 K. With increasing of yttrium concentration, electrical resistivity decreases, and reaches 0.8 mΩ cm for x = 0.10 sample at room temperature. The absolute Seebeck coefficients increase monotonically with increasing temperature in the whole temperature range. Sample with x = 0.03 exhibits the highest absolute Seebeck coefficient 219 μV K−1 at 1059 K, as well as the maximum power factor 11 μW cm−1 K−2 at 624 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.