Abstract
Yttrium-based metal-organic frameworks built on hexanuclear clusters (Y6-MOFs) represent an important subgroup of MOFs that are assembled from Y6 clusters and diverse organic linkers, featuring a variety of topologies. Due to the robust Y-O bonds and high connectivity of hexanuclear SBUs, Y6-MOFs are generally thermally stable and resistant to water. Additionally, their pore structures are highly tunable through the practice of the reticular chemistry strategy, resulting in excellent performance in gas adsorption and separation related applications. Y6-MOFs are structurally analogous to Zr6-MOFs; however, the existence of charge-balancing cations in Y6-MOFs serves as an additional pore structure regulator, enhancing their tailorability with respect to pore shape and dimensions. In this Frontier article, we summarize the main advances in the design and synthesis of Y6-MOFs, with a particular focus on the precise engineering of their pore structure for gas separation. Future directions of research efforts in this field are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.