Abstract

The presence of cation antisite defects is considered to be one of the most important factors determining the fluorescence, laser, and scintillation properties of rare earth-doped yttrium aluminum garnet (YAG) materials. However, no direct evidence or systematic investigation of antisite defect evolution as a function of cation composition variation in YAG has been reported in the previous literature. In this paper, we report a combined neutron and X-ray diffraction investigation on cation antisite defects performed on specially synthesized nonstoichiometric yttrium aluminum garnet nanoparticles to try to understand the defect chemistry in the YAG system. No evidence was found for YAl,16a, YAl,24d and AlY,24c antisite defects in these specially fabricated samples within the limit of diffraction techniques. The results suggest that YAG materials containing low level or no antisite defects can be achieved through low temperature synthesis process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.