Abstract

BackgroundThe purpose of the study is to evaluate whether a pinhole collimator is better adapted to bremsstrahlung single photon emission computed tomography [SPECT] than parallel-hole collimators and in the affirmative, to evaluate whether pinhole bremsstrahlung SPECT, including a simple model of the scatter inside the patient, could provide a fast dosimetry assessment in liver selective internal radiotherapy [SIRT].Materials and methodsBremsstrahlung SPECT of an abdominal-shaped phantom including one cold and five hot spheres was performed using two long-bore parallel-hole collimators: a medium-energy general-purpose [MEGP] and a high-energy general-purpose [HEGP], and also using a medium-energy pinhole [MEPH] collimator. In addition, ten helical MEPH SPECTs (acquisition time 3.6 min) of a realistic liver-SIRT phantom were also acquired.ResultsWithout scatter correction for SPECT, MEPH SPECT provided a significantly better contrast recovery coefficient [CRC] than MEGP and HEGP SPECTs. The CRCs obtained with MEPH SPECT were still improved with the scatter correction and became comparable to those obtained with positron-emission tomography [PET] for the 36-, 30- (cold), 28-, and 24-mm-diameter spheres: CRC = 1.09, 0.59, 0.91, and 0.69, respectively, for SPECT and CRC = 1.07, 0.56, 0.84, and 0.63, respectively, for PET. However, MEPH SPECT gave the best CRC for the 19-mm-diameter sphere: CRC = 0.56 for SPECT and CRC = 0.01 for PET. The 3.6-min helical MEPH SPECT provided accurate and reproducible activity estimation for the liver-SIRT phantom: relative deviation = 10 ± 1%.ConclusionBremsstrahlung SPECT using a pinhole collimator provided a better CRC than those obtained with parallel-hole collimators. The different designs and the better attenuating material used for the collimation (tungsten instead of lead) explain this result. Further, the addition of an analytical modeling of the scattering inside the phantom resulted in an almost fully recovered contrast. This fills the gap between the performance of90Y-PET and bremsstrahlung pinhole SPECT which is a more affordable technique and could even be used during the catheterization procedure in order to optimize the90Y activity to inject.

Highlights

  • The purpose of the study is to evaluate whether a pinhole collimator is better adapted to bremsstrahlung single photon emission computed tomography [SPECT] than parallel-hole collimators and in the affirmative, to evaluate whether pinhole bremsstrahlung SPECT, including a simple model of the scatter inside the patient, could provide a fast dosimetry assessment in liver selective internal radiotherapy [SIRT]

  • Even if99mTc-MAA SPECT shows some usefulness in simulating the liver-SIRT procedure [3,4,5],90Y-microspheres differ from99mTc-MAA by the higher number of particles injected during the therapeutic procedure, which could lead to a more pronounced embolic effect [6]

  • In bremsstrahlung SPECT, the different designs and the better attenuating material used for the collimation could result in better bremsstrahlung SPECT performances using the pinhole collimator

Read more

Summary

Introduction

The purpose of the study is to evaluate whether a pinhole collimator is better adapted to bremsstrahlung single photon emission computed tomography [SPECT] than parallel-hole collimators and in the affirmative, to evaluate whether pinhole bremsstrahlung SPECT, including a simple model of the scatter inside the patient, could provide a fast dosimetry assessment in liver selective internal radiotherapy [SIRT]. A selective internal radiation therapy [SIRT] using90Ylabeled microspheres is a rapidly emerging treatment of unresectable, chemorefractory primary and metastatic liver tumors. The success of such therapeutic approach macroaggregates [99mTc-MAA] is mainly intended to rule out patients who display a liver-to-lung shunt in excess of 20% [1,2]. Imaging the actual90Y-microsphere deposition during the liver SIRT appears preferable. The authors concluded: ‘ quantitative in vivo estimation of microsphere biodistribution may prove technically challenging, the clinical effect could be enormous, permitting dose optimization to maximize tumor kill while limiting toxic effects on normal liver tissues.’. The authors concluded: ‘ quantitative in vivo estimation of microsphere biodistribution may prove technically challenging, the clinical effect could be enormous, permitting dose optimization to maximize tumor kill while limiting toxic effects on normal liver tissues.’ human liver SIRT appears quite incompatible with MR: the X-ray angiographic imager will difficultly be implemented around the MR table, and the long duration of liver SIRT, which can take hours when the arterial tree is challenging, can unlikely be fitted into clinical MR agenda

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.