Abstract

PurposeTo evaluate the yttrium-90 (90Y) activity distribution in biopsy tissue samples of the treated liver to quantify the dose with higher spatial resolution than positron emission tomography (PET) for accurate investigation of correlations with microscopic biological effects and to evaluate the radiation safety of this procedure. Materials and MethodsEighty-six core biopsy specimens were obtained from 18 colorectal liver metastases (CLMs) immediately after 90Y transarterial radioembolization (TARE) with either resin or glass microspheres using real-time 90Y PET/CT guidance in 17 patients. A high-resolution micro–computed tomography (micro-CT) scanner was used to image the microspheres in part of the specimens and allow quantification of 90Y activity directly or by calibrating autoradiography (ARG) images. The mean doses to the specimens were derived from the measured specimens’ activity concentrations and from the PET/CT scan at the location of the biopsy needle tip for all cases. Staff exposures were monitored. ResultsThe mean measured 90Y activity concentration in the CLM specimens at time of infusion was 2.4 ± 4.0 MBq/mL. The biopsies revealed higher activity heterogeneity than PET. Radiation exposure to the interventional radiologists during post-TARE biopsy procedures was minimal. ConclusionsCounting the microspheres and measuring the activity in biopsy specimens obtained after TARE are safe and feasible and can be used to determine the administered activity and its distribution in the treated and biopsied liver tissue with high spatial resolution. Complementing 90Y PET/CT imaging with this approach promises to yield more accurate direct correlation of histopathological changes and absorbed dose in the examined specimens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call