Abstract

Yttria-stabilized zirconia (YSZ, ZrO2:Y2O3) was deposited on (100) silicon by two physical vapor deposition techniques: pulsed laser deposition (PLD) and reactive magnetron sputtering (RMS). PLD thin films were grown on silicon substrates at 500°C from the ablation of a 8YSZ ceramic target by a KrF excimer laser. RMS thin films were obtained by direct current magnetron sputtering of a Zr/Y metallic target in an oxygen/argon atmosphere. The deposition rate of the PLD technique using an UV excimer laser delivering pulses at a repetition rate of 40Hz was found two orders of magnitude lower than the RMS method one. Both techniques led to the growth of crystalline films with a (111) preferential orientation. PLD films were dense and featureless whereas RMS ones exhibited well defined but compact columnar structure. Growth of a YSZ film of about 1μm covering a rough and porous commercial anode support (NiO–YSZ cermet) was successfully carried out with both methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.