Abstract

We report a novel design for a high-power ytterbium disk laser. This laser utilizes radial diode pumping of a back surface cooled active-mirror geometry. Wing absorption of the pump light at 0.99 /spl mu/m allows efficient laser operation at 1.05 /spl mu/m with a low quantum defect. Laser performance and thermal loading were characterized for a wide range of conditions. Optimized operation of the laser yielded 490 W in a quasi-continuous-wave mode. Electrical efficiency of the laser was found to be 9.4%, while heating of the laser disk was only 3.2% of the absorbed optical power. Fluorescence re-absorption is identified as the principal heat generation mechanism in this laser. A simplified extension to the conventional rate model is proposed for lasing in radiation-trapped systems. This model allows power flow calculations in a radiation-trapped laser system using a single parameter determined from fluorescence decay waveforms. The revised model agrees with heat load measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.