Abstract

Different samples of xTeO2.(25-y)B2O3.zV2O5.yYb2O3 (or TBVY) new glass material were synthesized by the classical melt-quenching method. Structural, optical, physical, and thermal analyses of the synthesized glasses were performed in addition to Monte Carlo simulation to test radiation shielding properties. The results showed that increasing ratios of Yb2O3 (y = 0.0, 0.5, 1.0, and 1.5 mol%) produced monotonic density values of the synthesized glasses ranging from 4.70058 g cm−3 to 5.01038 g cm−3. XRD and FTIR analyses were used to confirm the glass structure of all samples. Optical transmittance and absorption parameters varied almost monotonically with increasing ratios of Yb2O3 indicating the ability to predict and control these properties using Yb2O3 additive. Furthermore, simulated radiation interaction parameters, such as attenuation coefficients and half-value layer, exhibited well-behaved dependence on the concentration ratio of the Yb2O3 additive. This approach to glass material synthesis demonstrate the useful synergetic effect of combining structural, optical, and radiation characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call