Abstract
Peri-implantitis is a major factor affecting implant prognosis, and the specific anatomy of the peri-implant area makes it more vulnerable to the local hypoxic environment caused by inflammation. N6-methyladenosine (m6A) plays a vital role in a multitude of biological processes, and its main "reader" Yth m6A RNA-binding protein 1 (YTHDF1) is suggested to affect osteogenic differentiation. However, the mechanism underlying the effect of YTHDF1 on osteogenic differentiation under hypoxic conditions remains unclear. To address this question, we examined the expression of YTHDF1 under hypoxia and observed that hypoxia suppressed osteogenic differentiation but promoted the expression of YTHDF1. Then we knocked down YTHDF1 and found decreased levels of osteogenic-related markers, alkaline phosphatase (ALP) activity, and alizarin red staining (ARS) under normoxia or hypoxia treatment. Bioinformatics analysis identified Thrombospondin-1 (THBS1) might be a downstream factor of YTHDF1. The results revealed that YTHDF1 enhanced the stability of THBS1 mRNA, and immunofluorescence assays found co-localization with YTHDF1 and THBS1 under hypoxia. Loss of function studies showed knocking down YTHDF1 or THBS1 exacerbated the osteogenic inhibition caused by hypoxia. All data imply that hypoxia suppresses osteogenic differentiation and promotes the expression of YTHDF1, which translationally regulates THBS1 in an m6A-dependent manner, potentially counteracting hypoxia-induced osteogenic inhibition through the YTHDF1/THBS1 pathway. The results of this study reveal for the first time the molecular mechanism of the regulation of osteogenic differentiation by YTHDF1 under hypoxia and suggest that YTHDF1, together with its downstream factor THBS1, may be critical targets to counteract osteogenic inhibition under hypoxic conditions, providing promising therapeutic strategy for the hypoxia-induced bone loss in peri-implantitis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.