Abstract

The fast and convenient demultiplex of optical vortex (OV) mode is crucial for its further application. We propose a novel approach that combines classic Young’s doublet with an OV source to effectively identify the OV mode through the analysis of interference patterns. The interference patterns of the OV source incident on the double slits can be perfectly illustrated by using both the classical double-slit interference method and the Huygens–Fresnel principle. The interference fringes will twist along the negative or positive direction of x axis when topological charge (TC) l > 0 or l < 0, and the degree of the movement varies with the TC, allowing for a quantitative display of the OV characteristics through the interference patterns. Additionally, we deduce analytically that the zeroth-order interference fringe has a linear relationship with the TC and the vertical position. These findings highlight the ability to identify the OV mode by analyzing the interference patterns produced by Young’s doublet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.