Abstract

Background: Diarrheal diseases in infancy and childhood are responsible for substantial morbidity and mortality in developing nations. Lysozyme, an antimicrobial component of human milk, is thought to play a role in establishing a healthy intestinal microbiota and immune system. Consumption of breast milk has been shown to prevent intestinal infections and is a recommended treatment for infants with diarrhea.Objective: This study aimed to examine the ability of lysozyme-rich goat milk to prevent intestinal infection.Methods: Six-week-old Hampshire-Yorkshire pigs were assigned to treatment groups balanced for weight, sex, and litter and were fed milk from nontransgenic control goats (GM group) or human lysozyme transgenic goats (hLZM group) for 2 wk before they were challenged with porcine-specific enterotoxigenic Escherichia coli (ETEC). Fecal consistency, complete blood counts, intestinal histology, and microbial populations were evaluated.Results: Pigs in the hLZM group had less severe diarrhea than did GM pigs at 24 and 48 h after ETEC infection (P = 0.01 and 0.05, respectively), indicating a less severe clinical disease state. Relative to baseline, postmilk hLZM pigs had 19.9% and 137% enrichment in fecal Bacteroidetes (P = 0.028) and Paraprevotellaceae (P = 0.003), respectively, and a 93.8% reduction in Enterobacteriaceae (P = 0.007), whereas GM pigs had a 60.9% decrease in Lactobacillales (P = 0.003) and an 83.3% enrichment in Burkholderiales (P = 0.010). After ETEC infection, hLZM pigs tended to have lower amounts (68.7% less) of fecal Enterobacteriaceae than did GM pigs (P = 0.058). There were 83.1% fewer bacteria translocated into the mesenteric lymph nodes of hLZM pigs than into those of GM pigs (P = 0.039), and hLZM pigs had 34% lower mucin 1 and 61% higher tumor necrosis factor-α expression in the ileum than did GM pigs (P = 0.046 and 0.034, respectively).Conclusion: Results of this study indicate that human lysozyme milk consumption before and during ETEC infection has a positive effect on clinical disease, intestinal mucosa, and gut microbiota in young pigs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call