Abstract

With Tera gauss magnetic fields, surface gravity sufficiently strong to significantly modify light paths, central densities higher than that of a standard nucleus, and rotation periods of only hundredths of a second, young neutron stars are sites of some of the most extreme physical conditions known in the Universe. They generate magnetic winds with particles that are accelerated to energies in excess of a TeV. These winds form synchrotron-emitting bubbles as the particle stream is eventually decelerated to match the general expansion caused by the explosion that formed the neutron stars. The structure of these pulsar wind nebulae allow us to infer properties of the winds and the pulsating neutron stars themselves. The surfaces of the the stars radiate energy from the rapidly cooling interiors where the physical structure is basically unknown because of our imprecise knowledge of the strong interaction at ultrahigh densities. Here I present a summary of recent measurements that allow us to infer the birth properties of neutron stars and to probe the nature of their winds, the physics of their atmospheres, and the structure of their interiors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.